The Overfullness of Graphs with Small Minimum Degree and Large Maximum Degree

نویسندگان

چکیده

Given a simple graph $G$, denote by $\Delta(G)$, $\delta(G)$, and $\chi'(G)$ the maximum degree, minimum chromatic index of respectively. We say $G$ is $\Delta$-critical if $\chi'(G)=\Delta(G)+1$ $\chi'(H)\le \Delta(G)$ for every proper subgraph $H$ overfull $|E(G)|>\Delta(G) \lfloor |V(G)|/2 \rfloor$. Since matching in can have size at most $\lfloor \rfloor$, it follows that $\chi'(G) = \Delta(G) +1$ overfull. Conversely, let be graph. The well known conjecture Chetwynd Hilton asserts provided $\Delta(G) > |V(G)|/3$. In this paper, we show any - 7\delta(G)/4\ge (3|V(G)|-17)/4$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diameter Two Graphs of Minimum Order with Given Degree Set

The degree set of a graph is the set of its degrees. Kapoor et al. [Degree sets for graphs, Fund. Math. 95 (1977) 189-194] proved that for every set of positive integers, there exists a graph of diameter at most two and radius one with that degree set. Furthermore, the minimum order of such a graph is determined. A graph is 2-self- centered if its radius and diameter are two. In this paper for ...

متن کامل

k-forested choosability of graphs with bounded maximum average degree

A proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. A graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $G$ such that each vertex receives a color from its own list. In this paper, we prov...

متن کامل

Crossing-critical graphs with large maximum degree

A conjecture of Richter and Salazar about graphs that are critical for a fixed crossing number k is that they have bounded bandwidth. A weaker well-known conjecture is that their maximum degree is bounded in terms of k. In this note we disprove these conjectures for every k ≥ 171, by providing examples of k-crossing-critical graphs with arbitrarily large maximum degree. A graph is k-crossing-cr...

متن کامل

Acyclic 6-coloring of graphs with maximum degree 5 and small maximum average degree

A k-colouring of a graph G is a mapping c from the set of vertices of G to the set {1, . . . , k} of colours such that adjacent vertices receive distinct colours. Such a k-colouring is called acyclic, if for every two distinct colours i and j, the subgraph induced by all the edges linking a vertex coloured with i and a vertex coloured with j is acyclic. In other words, every cycle in G has at l...

متن کامل

H-Free Graphs of Large Minimum Degree

We prove the following extension of an old result of Andrásfai, Erdős and Sós. For every fixed graph H with chromatic number r+1 ≥ 3, and for every fixed > 0, there are n0 = n0(H, ) and ρ = ρ(H) > 0, such that the following holds. Let G be an H-free graph on n > n0 vertices with minimum degree at least ( 1 − 1 r−1/3 + ) n. Then one can delete at most n2−ρ edges to make G r-colorable.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Discrete Mathematics

سال: 2022

ISSN: ['1095-7146', '0895-4801']

DOI: https://doi.org/10.1137/21m1432776